OpenStack

What is OpenStack?

OpenStack is a cloud operating system that controls large pools of compute, storage, and networking resources throughout a datacenter, all managed and provisioned through APIs with common authentication mechanisms.

A dashboard is also available, giving administrators control while empowering their users to provision resources through a web interface.

Beyond standard infrastructure-as-a-service functionality, additional components provide orchestration, fault management and service management amongst other services to ensure high availability of user applications.





The OpenStack Landscape

OpenStack is broken up into services to allow you to plug and play components depending on your needs. The openstack map gives you an “at a glance” view of the openstack landscape to see where those services fit and how they can work together.

What are the components of OpenStack?

OpenStack is made up of many different moving parts. Because of its open nature, anyone can add additional components to OpenStack to help it to meet their needs. But the OpenStack community has collaboratively identified nine key components that are a part of the “core” of OpenStack, which are distributed as a part of any OpenStack system and officially maintained by the OpenStack community.

  • Nova is the primary computing engine behind OpenStack. It is used for deploying and managing large numbers of virtual machines and other instances to handle computing tasks.
  • Swift is a storage system for objects and files. Rather than the traditional idea of a referring to files by their location on a disk drive, developers can instead refer to a unique identifier referring to the file or piece of information and let OpenStack decide where to store this information. This makes scaling easy, as developers don’t have the worry about the capacity on a single system behind the software. It also allows the system, rather than the developer, to worry about how best to make sure that data is backed up in case of the failure of a machine or network connection.
  • Cinder is a block storage component, which is more analogous to the traditional notion of a computer being able to access specific locations on a disk drive. This more traditional way of accessing files might be important in scenarios in which data access speed is the most important consideration.
  • Neutron provides the networking capability for OpenStack. It helps to ensure that each of the components of an OpenStack deployment can communicate with one another quickly and efficiently.
  • Horizon is the dashboard behind OpenStack. It is the only graphical interface to OpenStack, so for users wanting to give OpenStack a try, this may be the first component they actually “see.” Developers can access all of the components of OpenStack individually through an application programming interface (API), but the dashboard provides system administrators a look at what is going on in the cloud, and to manage it as needed.
  • Keystone provides identity services for OpenStack. It is essentially a central list of all of the users of the OpenStack cloud, mapped against all of the services provided by the cloud, which they have permission to use. It provides multiple means of access, meaning developers can easily map their existing user access methods against Keystone.
  • Glance provides image services to OpenStack. In this case, “images” refers to images (or virtual copies) of hard disks. Glance allows these images to be used as templates when deploying new virtual machine instances.
  • Ceilometer provides telemetry services, which allow the cloud to provide billing services to individual users of the cloud. It also keeps a verifiable count of each user’s system usage of each of the various components of an OpenStack cloud. Think metering and usage reporting.
  • Heat is the orchestration component of OpenStack, which allows developers to store the requirements of a cloud application in a file that defines what resources are necessary for that application. In this way, it helps to manage the infrastructure needed for a cloud service to run.

How to Install Your Own Cloud Platform with OpenStack in CentOS 7

This tutorial will guide you on how you can deploy your own private cloud infrastructure with OpenStackinstalled on a single node in CentOS 7 or RHEL 7 or Fedora distributions by using rdo repositories, although the deployment can be achieved on multiple nodes.

Requirement

Sophat Saom

Senior System Engineer, VCP

View my other posts

Leave a Reply